Design and Implementation of Compact Hy- Brid Four-mode Bandpass Filter with Multi- Transmission Zeros

نویسندگان

  • X. Guan
  • X. Wang
  • B. Wang
  • Y. Yuan
  • H. Liu
چکیده

Abstract—This paper presents a novel compact microstrip hybrid four-mode bandpass filter (BPF) with good selectivity and multitransmission zeros. By adding an external resonator to a triplemode stub-loaded resonator, four modes are generated in the desired passband and a hybrid four-mode BPF is implemented. Oddand even-mode theory is introduced to investigate the mode characteristics of triple-mode resonator in detail. Circuit model and coupling matrix are built to further explain the proposed methodology. A microstrip BPF with central frequency of 3.4GHz for wireless communication was designed and fabricated. Three transmission zeros are obtained at 3.2GHz, 3.55 GHz and 3.73GHz, which improve selectivity and outof-band rejection of the filter. The measured results of the fabricated filter represent good in-band and sharp sideband characteristic, which match well with simulated results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Bandpass Filter Using Y-shaped Dual-Mode Resonator for C-Band Receiver (Research Note)

In this study, a fractal, Y-shaped dual-mode resonator bandpass filter (BPF) with input-output cross-coupling is introduced. A parallel-coupling feed structure with a cross coupling has been used to generate two transmission zeroes (TZs) near the lower and upper cutoff frequency that can effectively improve the passband edge selectivity. Also, a fractal shaped based on conventional diamond and ...

متن کامل

A Compact Ultra-Wideband Bandpass Filter with Sharp-Rejection using Complementary Split Ring Resonators

A compact and sharp-rejection ultra-wideband (UWB) microstrip band-pass filter (BPF) is developed using of left handed metamaterials realized by complementary split ring resonator (CSRR). Moreover, proposed structure consists of two doublets parallel coupling gaps at each side of a microstrip ring. In comparison with some other filters, this structure shows a significantly wider passband due to...

متن کامل

A Compact UWB Bandpass Filter with High Selectivity and Dual Notched-Band

A novel compact-sized ultra-wideband (UWB) bandpass filter (BPF) is proposed in this paper. The proposed BPF is highly selective and is able to eliminate WLAN signals from 5.15-5.35 GHz, and downlink of X-band satellite communication signals from 7.25-7.75 GHz. Generally, a multiple-mode resonator (MMR), comprised of a U-shaped line, with two high impedance stubs connected to it, and one steppe...

متن کامل

A Compact Ultra-Wideband Filter Based on Left Handed Transmission Line by Using Complementary Split Ring Resonators and Series Capacitor

A compact and sharp rejection UWB microstrip bandpass filter is developed using left handed metamaterials. For realizing a backward-wave propagation medium, two split ring resonator (CSRR) in the back substrate side and also one series capacitor etched in the host line, are used to produce a negative effective ε and μ, simultaneously. Moreover, in the proposed structure, two doublets parallel c...

متن کامل

Design and Analysis of Ultra-wide Band Bandpass Filter Using Spiral Stub-Loaded Triple-Mode Resonator with a Notched Band

An ultra-wide band band-pass filter using novel spiral stub-loaded triple-mode resonator (SSLTMR) is presented. New spiral stub loaded resonator is analyzed with odd and even modes analysis for this class of BPF, achieving higher band wide and size reduction. In order to have a good response characterized, two (SSL-TMRs) and two quarter wavelength digital coupled lines are used. This new design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012